3.2.55 \(\int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \, dx\) [155]

Optimal. Leaf size=95 \[ \frac {16 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d} \]

[Out]

16/5*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/3*a^2*(cos(
1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*a^2*cos(d*x+c)^(3/2)*si
n(d*x+c)/d+4/3*a^2*sin(d*x+c)*cos(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2836, 2719, 2715, 2720} \begin {gather*} \frac {4 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {16 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}+\frac {4 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2,x]

[Out]

(16*a^2*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a^2*EllipticF[(c + d*x)/2, 2])/(3*d) + (4*a^2*Sqrt[Cos[c + d*x]]
*Sin[c + d*x])/(3*d) + (2*a^2*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d)

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2836

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rubi steps

\begin {align*} \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \, dx &=\int \left (a^2 \sqrt {\cos (c+d x)}+2 a^2 \cos ^{\frac {3}{2}}(c+d x)+a^2 \cos ^{\frac {5}{2}}(c+d x)\right ) \, dx\\ &=a^2 \int \sqrt {\cos (c+d x)} \, dx+a^2 \int \cos ^{\frac {5}{2}}(c+d x) \, dx+\left (2 a^2\right ) \int \cos ^{\frac {3}{2}}(c+d x) \, dx\\ &=\frac {2 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {1}{5} \left (3 a^2\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{3} \left (2 a^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {16 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 5.78, size = 235, normalized size = 2.47 \begin {gather*} \frac {a^2 (1+\cos (c+d x))^2 \sec ^4\left (\frac {1}{2} (c+d x)\right ) \left (\frac {12 (3 \cos (c-d x-\text {ArcTan}(\tan (c)))+\cos (c+d x+\text {ArcTan}(\tan (c)))) \csc (c) \sec (c)}{\sqrt {\sec ^2(c)}}-20 \cos (c+d x) \sqrt {\cos ^2(d x-\text {ArcTan}(\cot (c)))} \sqrt {\csc ^2(c)} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\text {ArcTan}(\cot (c)))\right ) \sec (d x-\text {ArcTan}(\cot (c))) \sin (c)+\cos (c+d x) (-48 \cot (c)+20 \sin (c+d x)+3 \sin (2 (c+d x)))-24 \cos (c) \csc (d x+\text {ArcTan}(\tan (c))) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\text {ArcTan}(\tan (c)))\right ) \sqrt {\sec ^2(c)} \sqrt {\sin ^2(d x+\text {ArcTan}(\tan (c)))}\right )}{60 d \sqrt {\cos (c+d x)}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2,x]

[Out]

(a^2*(1 + Cos[c + d*x])^2*Sec[(c + d*x)/2]^4*((12*(3*Cos[c - d*x - ArcTan[Tan[c]]] + Cos[c + d*x + ArcTan[Tan[
c]]])*Csc[c]*Sec[c])/Sqrt[Sec[c]^2] - 20*Cos[c + d*x]*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[c]^2]*Hyperge
ometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[d*x - ArcTan[Cot[c]]]*Sin[c] + Cos[c + d*x]*(-4
8*Cot[c] + 20*Sin[c + d*x] + 3*Sin[2*(c + d*x)]) - 24*Cos[c]*Csc[d*x + ArcTan[Tan[c]]]*HypergeometricPFQ[{-1/2
, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sqrt[Sec[c]^2]*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2]))/(60*d*Sqrt[Cos
[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.16, size = 250, normalized size = 2.63

method result size
default \(-\frac {4 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{2} \left (-12 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+32 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-13 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{15 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(250\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-4/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(-12*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6
+32*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-13*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+5*(sin(1/2*d*x+1/2*c)^2
)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-12*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+
1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^2*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.13, size = 149, normalized size = 1.57 \begin {gather*} -\frac {2 \, {\left (5 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 12 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 12 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (3 \, a^{2} \cos \left (d x + c\right ) + 10 \, a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{15 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

-2/15*(5*I*sqrt(2)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*I*sqrt(2)*a^2*weierstrass
PInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 12*I*sqrt(2)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse(-
4, 0, cos(d*x + c) + I*sin(d*x + c))) + 12*I*sqrt(2)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos
(d*x + c) - I*sin(d*x + c))) - (3*a^2*cos(d*x + c) + 10*a^2)*sqrt(cos(d*x + c))*sin(d*x + c))/d

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)*(a+a*cos(d*x+c))**2,x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3063 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^2*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Mupad [B]
time = 0.74, size = 104, normalized size = 1.09 \begin {gather*} \frac {2\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3\,d}+\frac {4\,a^2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3\,d}-\frac {2\,a^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^2,x)

[Out]

(2*a^2*ellipticE(c/2 + (d*x)/2, 2))/d + (4*a^2*ellipticF(c/2 + (d*x)/2, 2))/(3*d) + (4*a^2*cos(c + d*x)^(1/2)*
sin(c + d*x))/(3*d) - (2*a^2*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d
*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________